

Date: 28-02-2020

Sentinel-5p+ Innovation (S5p+I) - Water Vapour Isotopologues (H2O-ISO)

Auxiliary User Manual (AUM)

Authors:

Tim Trent and Hartmut Bösch: Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom and National Centre for Earth Observation NCEO

Matthias Schneider, Farahnaz Khosrawi, and Christopher Diekmann: Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe Institute of Technology, Karlsruhe, Germany

Harald Sodemann, Geophysical Institute, University of Bergen, Bergen, Norway

Doc ID: S5P+I-H2O-ISO-AUM

Date: 28-02-2020

Change log

Version	Date	Status	Authors	Reason for change
Draft 0.1	31-Jan-2020	Initial internal draft for project team	T. Trent, H. Bösch M. Schneider, F. Khosrawi, C. Diekmann, , H. Sodemann	New document
Draft 1	4-Feb-2020	Document prepared for submission		Consolidated version
Draft 1.1	24-Feb-2020	Document amended for acceptance by ESA		Updates based on ESA comments
Draft 1.2	28-Feb-2020	Document prepared for submission		Co-author feedback

Doc ID: S5P+I-H2O-ISO-AUM

Date: 28-02-2020

Table of Contents

1	Inti	roduction	4
	1.1	Scope and Objectives	4
2	Dat	ta for the University of Leicester Full Physics Processor	5
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	S5p L1b SWIR (Spectra Input Data Base 1) Cloud Information for S5p IFOV (Input Data Base 2) Surface Elevation Input (Input Data Base 3) Meteorological a priori Information (Input Data Base 4) Source of CH ₄ a priori Information (Input Data Base 5). Source of CO a priori Information (Input Data Base 6) TROPOMI Mean Irradiance Spectra (Input Data Base 7) Sounding List (Auxiliary 1) UoL-FP Auxiliary Data (Auxiliary 2). Geospatial/Temporal Data (Auxiliary 3) State Vector Elements (Auxiliary 4)	9 9 9 9 9 . 10 . 10 . 11 . 11
	2.12 2.13 2.14	Land Sea Mask (Auxiliary 5) Absorption Cross Sections (Auxiliary 6) S5p Instrument Line Shape Functions (Auxiliary 7)	. 16
3	Dat	ta for Validation	.18
4	Dat	ta for Satellite Intercomparisons	.19
5	Dat	ta for Model Intercomparisons	.20
6	Ac	ronyms and Abbreviations	.21
7	Re	ferences	.22

Sentinel-5p+Innovation (S5p+I) - Water Vapour Isotopologues (H2O-ISO):

Auxiliary User Manual (AUM)

Date: 28-02-2020

1 Introduction

The Sentinel era of remote sensing represents a step change in our ability to monitor environmental change within the Earth system. The diversity of instruments being flown is also driving innovative research, leading to new novel state-of-the-art geophysical products. In order to successfully translate the generation of satellite products from research mode to operational production, all elements surrounding the workflow need accurate and concise documentation. Estimation from remote sensing platforms of geophysical parameters using modern algorithms use auxiliary data from numerous sources. With the increasing sophistication of these algorithms, coupled with technological improvements of our measurement systems, this complexity can be mirrored in the auxiliary data used.

1.1 Scope and Objectives

This document is the Auxiliary User Manual (AUM) for the European Space Agency (ESA) Sentinel-5p Innovation (S5p+I) project for stable water isotopologues. The objectives of this document are to describe:

- All individual auxiliary datasets used to run the University of Leicester Full Physics algorithm (UoL-FP). The structure of this document is designed to mirror the flow of data into the processor and includes information where the input datasets are processed into the internal format used by the algorithm. Information is also provided that maps variables within the internal format to their original source.
- Data used/involved in the verification of the retrieved output from the water vapour isotopologue processor.
- Detail secondary sources of data used for the validation, intercomparison and scientific exploitation of the TROPOspheric Monitoring Instrument (TROPOMI) stable water vapour isotopologues. These include in situ measurements from ground sites and campaigns, additional satellite products and water isotope enabled models.

This document is complimented by an online <u>datapool</u> which collects together source information regarding all the data products described in this document. In the case of large datasets (e.g. ECMWF meteorological fields, S5p L1b spectra) or 3rd party datasets (where the project does not have permission to redistribute), links are provided to where the original data can be found.

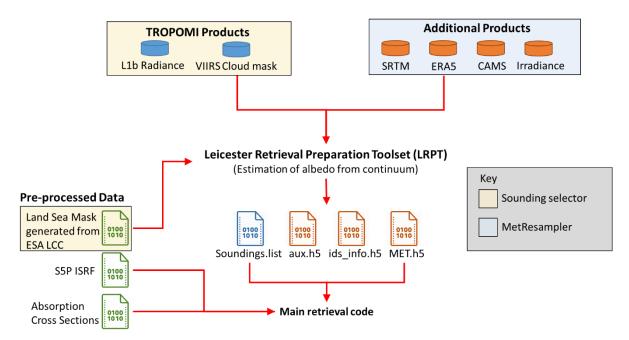
Sentinel-5p+Innovation (S5p+I) - Water Vapour Isotopologues (H2O-ISO):

Doc ID: S5P+I-H2O-ISO-AUM

Date: 28-02-2020


2 Data for the University of Leicester Full Physics Processor

This section provides the overview of data products used in relation to the workflow of the University of Leicester Full Physics (UoL-FP) algorithm. In total, there are six separate sources of data that are fed in to the UoL-FP workflow at different stages. These six sources are:


- TROPOMI measured shortwave infrared (SWIR) radiances from bands 7 and 8, level 2 (L2) and auxiliary products.
- European Centre for Medium-Range Weather Forecasts (ECMWF) 5th Reanalysis (ERA5) meteorological fields.
- Greenhouse gas (GHG) and GHG flux products from the Copernicus Atmosphere Monitoring Service (CAMS).
- Surface height information from the Shuttle Radar Topography Mission (SRTM).
- Land cover information from ESA Climate Change Initiative (CCI).
- Spectroscopic databases such as the high-resolution transmission molecular absorption database (HITRAN).

Prior to the launch of a retrieval, a pre-processing step is implemented. Within the UoL-FP algorithm, this stage is known as the Leicester Retrieval Preparation Toolset (LRPT) that essentially prepares the majority of the data described above for ingestion into the main retrieval code.

The first step selects which TROPOMI pixels are to be used within the retrievals by the sounding selector. Based on user-defined inputs that specify the date(s) and geographic region to be processed, pixels are identified using the TROPOMI Band 7 L1b file(s). Additional information on the scene is then gathered from the TROPOMI L2 cloud product, L2__NP_BND7. This product maps cloud properties as observed by the Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite which proceeds S5p by 3.5 minutes in the Local Time Ascending Node (LTAN). The computed cloud fraction is then used to remove cloudy TROPOMI scenes from entering the main retrieval code. A secondary static product filter is then used to remove ocean scenes, based on the ESA CCI LAND Cover Change (LCC) level (L4) product. This auxiliary product can be reprocessed to add or remove additional surface classification, such as lakes if needed. The sounding selector then produces a list of scenes for processing with a unique exposure identifier which are written to file (sounding.list) along with the full path to the L1b Band 7 file. At a later stage in the retrieval code when the spectra are read-in, bands 7 and 8 are read-in jointly to form a singular SWIR band. The formatting of the L1b file names allows for mapping to the corresponding L1b and L2 files. Additional information about the TROPOMI pixels are also written to the aux and ids_info files for late use by the retrieval code.

The next stage of the LRPT is to run the MetSampler to map all the state vector elements needed for each pixel along with supporting metadata. This data feed draws surface altitude from a static digital elevation mask (DEM) produced from SRTM data, surface temperature and pressure, temperature and water vapour profiles from ERA5, and greenhouse gas profile information (CO & CH4) from CAMS data. All profile data is sampled using the full ECMWF model resolution, before being mapped on the retrieval pressure level grid. All the state vector information is then written to the MET auxiliary file. This workflow is summarised in Figure 2-1.

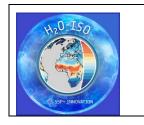


Figure 2-1: Workflow for data inputs used within the UoL-FP algorithm for the retrieval of water vapour isotopologues from the TROPOMI instrument on board Sentinel 5P. Datasets handled by the sounding selector and MetResampler modules of the LRPT are identified with coloured boxes.

To further describe the data flowing into the UoL-FP processor, they are now categorised as one of two types:

- Input Data Bases (IDB): These are data files that are current TROPOMI products and that are already described in various reference documents, or from third parties with similar levels of documentation (e.g. ECMWF).
- Auxiliary (AUX): These are files internally generated by the processing chain and used by the IDB as inputs. Some files are pre-processed from additional data sources and are used by all retrievals (non-scene dependent).

The allocation of these categories to the previously described data products is summarised by Table 2-1.

Sentinel-5p+Innovation (S5p+I)Version: Draft 1.2- Water Vapour Isotopologues
(H2O-ISO):
Auxiliary User Manual (AUM)Doc ID:
S5P+I-H2O-ISO-AUM
Date: 28-02-2020

Table 2-1: Overview of auxiliary data used for the retrieval of water vapour isotopologues from TROPOMI.

ID	Name	Short Description	Format	Size	Static or Dynamic	Spatial Coverage	Generation Frequency	Validity	Source
IDB_1	S5P_OFFL_L1B_RA_ <band_n UMBER>_<yyyymddthhmmss >_<yyyymmddthhmmss>_< 00000>_<cc>_<pppppp>_<yyy YMMDDTHHMMSS>.nc</yyy </pppppp></cc></yyyymmddthhmmss></yyyymddthhmmss </band_n 	S5P L1b SWIR radiances where: product validity start time: <yyyymddthhmmss> product validity stop time: <yyyymmddthhmmss> absolute orbit number: <00000> collection number: <cc> processor version number: <pppppp> production (start) time: <yyyymmddthhmmss></yyyymmddthhmmss></pppppp></cc></yyyymmddthhmmss></yyyymddthhmmss>	NetCDF	~1.5 Gb	D	1 orbit	~90 minutes	n/a	CEDA Archive
IDB_2	S5P_OFFL_L2NP_BD7_ <yyy ymmddThhmmss>_<yyyymmd DTHHMMSS>_<00000>_<cc>_ <pppppp>_<yyyymmddthhm MSS>.nc</yyyymmddthhm </pppppp></cc></yyyymmd </yyy 	Propagated cloud information relevant for TROPOMI SWIR bands derived from observations made by the VIIRS instrument on NPP. File name format as for IDB_1	NetCDF	~150 Mb	D	1 orbit	~90 minutes	n/a	Sentinel-5P Pre- Operations Hub
IDB_3	srtm_dem.nc	SRTM digital elevation map	NetCDF	3.7 Gb	S	Global	n/a	Until revised	<u>Shuttle Radar</u> <u>Topography</u> Mission
IDB_4	<yyyymm>_<var>.nc</var></yyyymm>	ECMWF Meteorological fields of surface and profile variables (Var) stored in monthly files.	NetCDF	1.6-3.4 Gb	D	Global	monthly	1 month	ECMWF ERA interim/ERA5
IDB_5	z_macc_l_jrc_ <yyyymm>_v10- S1NOAA_ra_ml_dm_ch4.nc</yyyymm>	CAMS Greenhouse Gases Flux Inversions CH4 data product	NetCDF	~70 Mb	D	Global	n/a	2012- present	ECMWF CAMS GHG Flux inversions

Version: Draft 1.2 Doc ID: S5P+I-H2O-ISO-AUM Date: 28-02-2020

IDB_6	co_ <yyyymm>_cams_6hr.nc</yyyymm>	CAMS Near Real Time/Reanalysis CO profiles	NetCDF	1.7 Gb	D	Global	6 hourly	2012- present	ECMWF CAMS
IDB_7	s5p_mean_swir_iradiance.dat	Mean SWIR irradiance calculated from TROPOMI L1B_IR_SIR product	.dat	45 Kb	S	Global	n/a	Until revised	Sentinel-5P Pre- Operations Hub
AUX_1	<job_id>.list.gz</job_id>	List of cloud cleared S5p sounding IDs	.list	~500 Mb	D	n/a	per day	1 day	generated by LRPT
AUX_2	<job_id>_aux.h5</job_id>	Auxiliary data used by the UoL- FP processor. This includes a unique sounding id, radiance statistics and albedo information	hdf5	~10 Mb	D	Global	per day	1 day	generated by LRPT
AUX_3	<job_id>_ids_info.h5</job_id>	Geospatial information used by UoL-FP processor for S5p pixel being retrieved	hdf5	~250 Mb	D	Global	per day	1 day	generated by LRPT
AUX_4	<job_id>_MET.h5</job_id>	All state vector information to be used by UoL-FP processor	hdf5	1.5-3 Gb	D	Global	per day	1 day	generated by LRPT
AUX_5	Ism_cci_lcc_X0.05_deg_Y0.05_ deg_2018.h5	Land sea mask derived from ESA land cover L4 product	hdf5	210 Mb	S	Global	n/a	Until revised	ESA Land Cover Project Site
AUX_6	<gas_id>_atm_<yyyymmdd>.a bs</yyyymmdd></gas_id>	Pre-calculated absorption cross section file using either HITRAN, SEOM_IAS or JPL databases. Date on file corresponds to the generation date of the ABSCO file	.abs	~960 Mb	S	n/a	n/a	Until revised	HITRAN
AUX_7	s5p_ <band_id>_atp_<pixel_i D>_isrf.dat</pixel_i </band_id>	Pre-formatted S5p ISRF information	.dat	~600 Kb	D	n/a	n/a	Until revised	S5P_OPER_AUX _ISRFv3.0.0.

8

Doc ID: S5P+I-H2O-ISO-AUM

Date: 28-02-2020

2.1 S5p L1b SWIR (Spectra Input Data Base 1)

TROPOMI SWIR spectra for bands 7 and 8 are used for the retrieval of water vapour isotopologues within this project. These are the official offline L1 files released by ESA and are openly available from <u>Sentinel-5P Pre-Operations Data Hub</u>, or via the Centre for Environmental Data Analysis (CEDA) with a user account. Further details regarding the file contents of the TROPOMI L1b radiance files can be found in Loots et al. 2017 and Vonk et al. 2018.

2.2 Cloud Information for S5p IFOV (Input Data Base 2)

Though the SWIR bands are split in two, bands 7 and 8, they both still have the same ground footprint. Therefore this project is able to utilise the official TROPOMI L2 VIIRS cloud product (L2__NP_BND7) to mask the both SWIR bands. Like the L1b spectra, the cloud product can be freely obtained via the <u>Sentinel-5P Pre-Operations Data Hub</u>. A subset of this archive is currently being uploaded on CEDA for this project and can be accessed in the same manner as the L1b files. Further details regarding the file contents of the VIIRS cloud mask product for TROPOMI can be found in Siddens 2016.

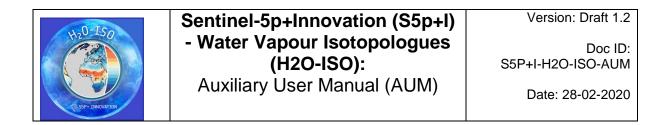
2.3 Surface Elevation Input (Input Data Base 3)

Information on the surface topography comes from the SRTM database. The DEM data has been processed and converted into netCDF format for use within the LRPT.

Variable Names	Variable Description	Source/Reference/Citation	Variable Units
lon	Longitude	https://dds.cr.usgs.gov/srtm/	Degrees East
lat	Latitude	https://dds.cr.usgs.gov/srtm/	Degrees North
data	Elevation	https://dds.cr.usgs.gov/srtm/	Metres

 Table 2-2: Contents of digital elevation file, srtm_dem.nc.

2.4 Meteorological a priori Information (Input Data Base 4)


ECMWF ERA5 provides the meteorological inputs to the retrieval processor. These are described in Hersbach and Dee, 2016a and 2016b. Meteorological fields are interpolated to the sounding date/time. Details of used variables are given in Section 2.10.

2.5 Source of CH₄ a priori Information (Input Data Base 5)

The methane data input uses a static field from CAMS (formally MACC II) (Marécal et al. 2015) which is propagated through time by applying a growth rate within the LRPT. The CH₄ profiles are interpolated to the sounding date/time. Details of used variables are given in Section 2.10.

2.6 Source of CO a priori Information (Input Data Base 6)

The carbon monoxide data input uses reanalysis/near-real-time (NRT) profiles from CAMS (formally MACC II) (Marécal et al. 2015). The CO profiles are interpolated to the sounding date/time by the LRPT. Details of used variables are given in Section 2.10

2.7 TROPOMI Mean Irradiance Spectra (Input Data Base 7)

The final input data source to the retrieval preprocessor is a precomputed irradiance spectrum for TROPOMI's SWIR bands 7 and 8. Measurements made by TROPOMI, taken from the L1B_IR_SIR product between 1st of July 2018 and 7th of February 2020, have been used to calculate the mean irradiance spectra. All inputs are quality flagged and filtered for bad values before being used in the final calculation (Figure 2-2). This spectra is used in the calculation of the albedo a priori (Auxiliary 2).

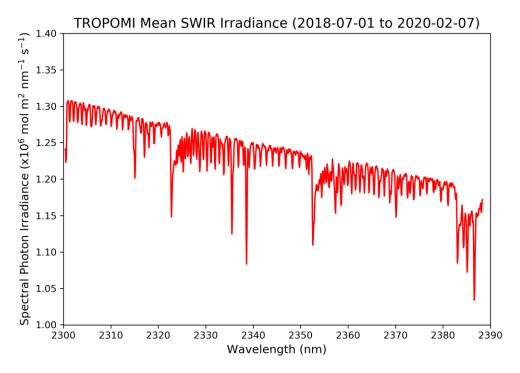


Figure 2-2: Mean SWIR irradiance spectrum calculated from TROPOMI measurements.

2.8 Sounding List (Auxiliary 1)

The first auxiliary file contains a list of pixel identifiers that are fed to the retrieval code.

Variable Names	Variable Description	Source/Reference/Citation	Variable Units
Exposure_ID	Unique identifier for specific S5p FOV/pixel	IDB_1	-
L1b file name	Filename including full path to corresponding S5p L1b file	IDB_1	-

Table 2	-3· Co	ntents	of	sounding	list	file
	J. UU		UI.	Sounding	nət	IIIC.

Doc ID: S5P+I-H2O-ISO-AUM

Date: 28-02-2020

2.9 UoL-FP Auxiliary Data (Auxiliary 2)

Auxilary data used by the UoL-FP retrieval processor. It should be noted that while the variables are only present for band 7, when the radiances are read in bands 7 and 8 are combined to form a singler band.

Variable Names	Variable Description	Source/Reference/Citation	Variable Units
Exposure_ID	Unique identifier for specific S5p FOV/pixel	IDB_1	-
albedo_B7	Estimated albedo (α)	$\alpha = \frac{\pi \bar{L}_{SWIR}}{(\bar{I}_{SWIR} \cos(SZA))}$ Where \bar{L}_{SWIR} is the mean SWIR band radiance, \bar{I}_{SWIR} is the mean SWIR and irradiance (IDB_7) and SZA is the solar zenith angle.	1
maxrad_B7	Maximum band radiance	IDB_1	mol.s-1.m- 2.nm-1.sr-1
meanrad_B7	Mean band Radiance	IDB_1	mol.s-1.m- 2.nm-1.sr-1
snr_B7	Mean band SNR calculated from pixel radiance noise (L1b variable radiance_noise)	IDB_1	1

2.10 Geospatial/Temporal Data (Auxiliary 3)

The third auxiliary file type contain temporal and geospatial information on the sounding/exposure indentifies in Auxiliary 1.

Table 2-5: Contents of file containing geospatial information used by UoL-FP.

Variable Names	Variable Description	Source/Reference/Citation	Variable Units
Day	Day of sounding	IDB_1	DD
Exposure_ID	Unique identifier for specific S5p FOV/pixel	IDB_1	-

Sentinel-5p+Innovation (S5p+I) - Water Vapour Isotopologues (H2O-ISO):

Auxiliary User Manual (AUM)

Date: 28-02-2020

FP_vertex_lat_1	Lower left pixel corner latitude	IDB_1	degrees
FP_vertex_lat_2	Lower right pixel corner latitude	IDB_1	degrees
FP_vertex_lat_3	Upper right pixel corner latitude	IDB_1	degrees
FP_vertex_lat_4	Upper left pixel corner latitude	IDB_1	degrees
FP_vertex_lon_1	Lower left pixel corner longitude	IDB_1	degrees
FP_vertex_lon_2	Lower right pixel corner longitude	IDB_1	degrees
FP_vertex_lon_3	Upper right pixel corner longitude	IDB_1	degrees
FP_vertex_lon_4	Upper left pixel corner longitude	IDB_1	degrees
GroundPixelQuality	Quality assessment information for each ground pixel. Flag meanings are: no_error, solar_eclipse, sun_glint_possible, descending, night, geo_boundary_crossing, geolocation_error	IDB_1	-
Hour	Hour in day	IDB_1	hh
L1B_path	Path to L1b file	IDB_1	-
Lat	Pixel centre latitude	IDB_1	degrees
Lon	Pixel centre longitude	IDB_1	degrees
MeasurementQuality	Overall quality information for a measurement. Flag meanings are: no_error, proc_skipped, no_residual,	IDB_1	-

Doc ID: S5P+I-H2O-ISO-AUM

Date: 28-02-2020

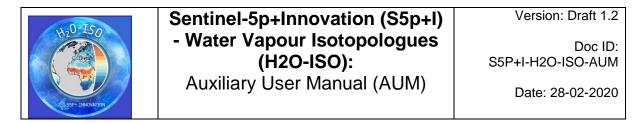
	saa, spacecraft_manoeuvre, sub_grp, irr_out_of_range, sub_group		
Minute	Minute of day	IDB_1	mm
Month	Month of sounding	IDB_1	MM
SAA	Solar azimuth angle	IDB_1	degrees
SZA	Solar zenith angle	IDB_1	degrees
Second	Second in day	IDB_1	SS.SSS
Year	Year of sounding	IDB_1	YYYY
frac_days_since	Fractional days since beginning of YYYYMMDD	IDB_1	-
satAA	Satellite azimuth angle	IDB_1	degrees
satZA	Satellite zenith angle	IDB_1	degrees

2.11 State Vector Elements (Auxiliary 4)

The <Job_id>_MET.h5 auxiliary file contains all the state vector elements for the UoL-FP retrieval processor. Profiles are interpolated from the ERA5/CAMS gridded space to TROPOMI pixel time and location on sigma levels. Gas concentarions are then converted from kg/kg to ppm before being mapped on the retrieval grid. For water isotopologues there is an additional flag that will alter which a priori profile is used based on whether a ratio or profile retrieval is being performed. The approach here ahas been taken and adapted from Scheepmaker et al. (2016). For HDO, a δ D profile is first constructed with a surface value of -100 ‰ which linearly decreases to -600 ‰ at the tropopause, increasing (linearly) to -400 ‰ at the TOA. For H₂O¹⁸ the relationship between δ ¹⁸O and δ D ("global meteoric water line", Craig 1961):

$$\delta D = 8 \cdot \delta^{18} O + 10 \%$$
Equation 1

The H₂O profile is then used to convert δD and $\delta^{18}O$ to the HDO and H₂O¹⁸ profiles respectively.



Doc ID: S5P+I-H2O-ISO-AUM

Date: 28-02-2020

Table 2-6: Contents of the <Job_id>_MET.h5 file used to populate the state vector components for UoL-FP.

Variable Names	Variable Description	Source/Reference/Citation	Variable Units
Exposure_id	Unique identifier for specific S5p FOV/pixel	IDB_1	-
Lon	Pixel centre longitude	IDB_1	degrees
Lat	Pixel centre latitude	IDB_1	degrees
T700	700 hPa temperature	IDB_4	К
a_CH4	Methane a prior profiles	IDB_5	ppm
a_CO	Carbon Monoxide a priori profiles	IDB_6	ppm
a_H2O	Water vapour a priori profiles used for H ₂ O	IDB_4	ppm
a_HDO	Water vapour a priori profiles used for HDO	IDB_4	ppm
a_H2O18	Water vapour a priori profiles used for H2O18	IDB_4	ppm
a_P	Pressure a priori profiles	IDB_4	Ра
a_alt_levels	Altitude a priori profiles	IDB_4	m
a_g_levels	Acceleration due to gravity a priori profiles	IDB_4	ms ²
alt	Surface altitude from SRTM	IDB_3	m
psurf	Surface pressure within IFOV from ECMWF	IDB_4	Pa
ptropo	Cold point tropopause height (Reichler et al. 2003)	IDB_4	Pa

2.12 Land Sea Mask (Auxiliary 5)

The Land sea mask generated for S5p retrievals is based on the ESA land cover (LCC) CCI L4 product. Within the LCC files, each cell is either assigned to a different land type or a value that indicates whether it is a water body or snow/ice. Because no differentiation is given between ocean, lakes or rivers we calculate land fraction within the grid pixel. A script is used to generate an augmented product that is used to mask TROPOMI pixels post retrieval if necessary (Figure 2-3). In addition, a similar variable id calculated for snow and ice fraction. Currently, this is not used within the preprocessing. This auxillary product is produced at a userspecified gridded resolution, with a default resolution is 0.05x0.05.

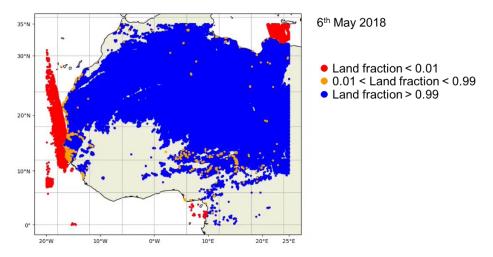
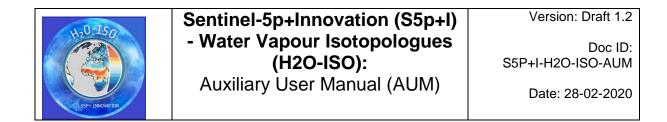


Figure 2-3: Cloud cleared TROPOMI pixels within the West African study region for 06/05/2018. Different colours have been assigned to each pixel beased on their land fraction. Default threshold values have been used, though these can be applied by the user post retrieval. The philosophy here is to not cast out any scenes that might be of interest later. This will also allow for different thresholds to be tested when assessing the quality of the product. Ocean pixels have also been filtered for sun glint (GroundPixelQuality, IBD_1).

Table 2-7: Summary of the contents of the file used for land/sea masking.

Variable Names	Variable Description	Source/Reference/Citation	Variable Units
lons	Longitude	<u>ftp://anon-</u> ftp.ceda.ac.uk/neodc/esacci /land_cover/	Degrees east
lats	Latitude		Degrees north
landFrac	Fractional land mass within grid cell	(Defourney et al. 2015)	1
snowlceFrac	Fraction of snow and ice covered surfaces within grid cell		1

Doc ID: S5P+I-H2O-ISO-AUM

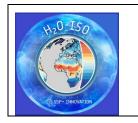

Date: 28-02-2020

2.13 Absorption Cross Sections (Auxiliary 6)

ACOS/OCO-2 absorption coefficient (ABSCO) binary formatted data files used by forward model (Payne 2017), produced using the HITRAN Application Programming Interface (HAPI, Kochanov et al., 2016).

Table 2-8: Contents of the absorption cross section used for the forward modelling of TROPOMI top-of-atmosphere (TOA) radiances.

Variable Names	Variable Description	Source/Reference/Citation	Variable Units
Gas_[Qabs]_Absorption	The absorption coefficients stored as a 4D table.	Payne 2017, Kochanov et al., 2016	-
Gas_Index	A string containing the 2 digit HITRAN index of the principal absorbing gas, equivalent to Qabs above.	Payne 2017, Kochanov et al., 2016	-
Pressure	The pressure is a dataset of size Npres representing the pressure in Pascals at each atmospheric level in the table.	Payne 2017, Kochanov et al., 2016	Pa
Temperature	Temperature is a 2D dataset of degrees Kelvin, of shape Npres x Ntemps It records the temperature grid point values, which might differ depending on pressure level.	Payne 2017, Kochanov et al., 2016	К
Wavenumber	The Wavenumber object is a dataset of size Nfreqs describing the frequency grid spacing.	Payne 2017, Kochanov et al., 2016	cm ⁻¹



2.14 S5p Instrument Line Shape Functions (Auxiliary 7)

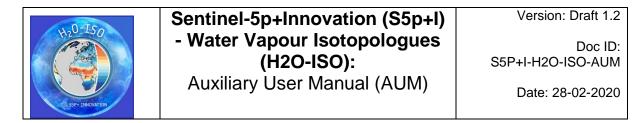
These files are internally formatted S5p instrument line shape (ILS) parameters based on the officially released ISRF-dataset product.

Variable Names	Variable Description	Source/Reference/Citation	Variable Units
ILS_PIXELS	S5p spectral band index number		-
ILS_DELTA_LAMBDA_1	ILS offset from central pixel	http://www.tropomi.eu/data- products/isrf-dataset	nm
ILS_RESPONSE_1	ILS response		n/a

Table 2-9: Input variables within the native UoL-FP I	LS files.
---	-----------

Version: Draft 1.2 Doc ID:

S5P+I-H2O-ISO-AUM


Date: 28-02-2020

3 Data for Validation

This section to be completed in the second release

4 Data for Satellite Intercomparisons This section to be completed in the second release

5 Data for Model Intercomparisons This section to be completed in the second release

Doc ID: S5P+I-H2O-ISO-AUM

Date: 28-02-2020

6 Acronyms and Abbreviations

Acronym	Definition
ABSCO	ACOS/OCO-2 absorption coefficient
AUM	Auxiliary User Manual
CAMS	Copernicus Atmospheric Monitoring Service
CCI	Climate Change Initiative
CEDA	Centre for Environmental Data Analysis
ECMWF	European Centre for Medium Range Forecasting
ERA5	ECMWF 5 th Reanalysis
ESA	European Space Agency
GHG	Greenhouse Gas
HAPI	HITRAN Application Programming Interface
ISRF	Instrument Spectral Response Function
L1b	Level 1b data product
L2	Level 2 data product
L4	Level 4 data product
LCC	Land Cover Change
LRPT	Leicester Retrieval Preparation Toolset
LSM	Land Sea Mask
LTAN	Local Time Ascending Node
NRT	Near Real Time
S5p	Sentinel 5 precursor
S5p+I	Sentinel-5p+Innovation
SRTM	Shuttle Radar Topography Mission
Suomi-NPP	Suomi National Polar-orbiting Partnership
SWIR	Shortwave Infrared
TOA	Top-of-Atmosphere
TROPOMI	TROPOspheric Monitoring Instrument
UoL-FP	University of Leicester Full Physics
VIIRS	Visible/Infra-red Imager and Radiometer Suit

Sentinel-5p+Innovation (S5p+I) - Water Vapour Isotopologues (H2O-ISO):

Doc ID: S5P+I-H2O-ISO-AUM

7 References

/**Craig 1961**/ Craig, H., 1961. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science, 133(3467), pp.1833-1834.

/**Defourney et al. 2015**/ Defourney, P. et al. (2015): ESA Land Cover Climate Change Initiative (ESA LC_cci) data: Global Land Cover Maps, Version 2.0.7 via Centre for Environmental Data Analysis, 30/01/2020

/Hersbach and Dee, 2016a/ Hersbach, H. and Dee, D., 2016. ERA5 reanalysis is in production, ECMWF Newsletter 147, ECMWF. Reading, UK.

/Hersbach and Dee, 2016b/ Hersbach, H. and Dee, D., 2016. ERA5 reanalysis is in production. ECMWF newsletter, 147(7), pp.5-6

/Kochanov et al., 2016/ R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcislo, C. Hill, J.S. Wilzewski, HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data, J. Quant. Spectrosc. Radiat. Transfer 177, 15-30 (2016) DOI: 10.1016/j.jqsrt.2016.03.005

/Loots et al. 2017/ E. Loots, L. Babić, R. Braak, W. Dierssen, J. Kissi-Ameyaw, Q. Kleipool, J. Leloux, A. Ludewig, N. Rozemeijer, J. Smeets, G. Vacanti (2017): Algorithm theoretical basis document for the TROPOMI L01b data processor, source: S5P-KNMI-L01B-0009-SD

/Marécal et al. 2015/ Marécal, V., Peuch, V.H., Andersson, C., Andersson, S., Arteta, J., Beekmann, M., Benedictow, A., Bergström, R., Bessagnet, B., Cansado, A. and Chéroux, F., 2015. A regional air quality forecasting system over Europe: the MACC-II daily ensemble production.

]/Payne 2017/ OCO (Orbiting Carbon Observatory) -2 ABSCO User Guide, Version 5, V. Payne, JPL, July 24 2017

/**Reichler et al. 2003**/ Reichler, T., Dameris, M. and Sausen, R., 2003. Determining the tropopause height from gridded data. Geophysical research letters, 30(20).

/Scheepmaker et al. 2016/ Scheepmaker, R.A., Hu, H., Borsdorff, T., Frankenberg, C., Risi, C., Hasekamp, O., Aben, I. and Landgraf, J., 2016. HDO and H2O total column retrievals from TROPOMI shortwave infrared measurements. Atmospheric Measurement Techniques, 9(8), pp.3921-3937.

/Siddens 2016/ R Siddens (2016): S5P-NPP Cloud Processor ATBD, source: S5P-NPPC-RAL-ATBD-0001

/Vonk et al. 2018/ F. Vonk, N. Rozemeijer, Q. Kleipool, R. van Versendal (2018): Input/output data specification for the TROPOMI L01b data processor, source: S5P-KNMI-L01B-0012-SD.